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Abstract— In this paper we focus on the problem of visual
odometry, i.e., the task of tracking the pose of a moving
platform using visual measurements. In recent years, several
VO algorithms have been proposed that employ nonlinear
minimization in a sliding window of poses for this task. Through
the use of iterative re-linearization, these methods are capable
of successfully addressing the nonlinearity of the measurement
models, and have become the de-facto standard for high-
precision VO. In this work, we conduct an analysis of the
properties of marginalization, which is the process through
which older states are removed from the sliding window.
This analysis shows that the standard way of marginalizing
older poses results in an erroneous change in the rank of the
measurements’ information matrix, and leads to underestima-
tion of the uncertainty of the state estimates. Based on the
analytical results, we also propose a simple modification of
the way in which the measurement Jacobians are computed.
This modification avoids the above problem, and results in
an algorithm with superior accuracy, as demonstrated in both
simulation tests and real-world experiments.

I. INTRODUCTION AND RELATED WORK

Accurate pose tracking is an essential requirement in a
number of systems, ranging from large-scale autonomous
vehicles to small hand-held devices. If a system operates in
an environment where reliable GPS reception is possible,
then it can use the GPS signals, possibly in conjunction
with additional sensors such as an inertial measurement unit
(IMU), to track its position. However, in GPS-denied en-
vironments, different sensing modalities must be employed.
Among the possible choices (e.g., cameras, laser rangefind-
ers, sonars) cameras stand out due to their low cost, size and
power consumption, as well as their widespread availability
on mobile devices. Recent advances in the performance of
vision sensors and computing hardware have made vision-
based algorithms a more attractive option. Motivated by these
reasons, in this paper we focus on the task of vision-based
motion estimation.

Several different methods for localization using cameras
have been proposed. For instance, when landmarks or fiducial
points with known positions are available, these can be used
to estimate the camera’s position with respect to a known
frame (e.g., [1]–[3]). However, when cameras operate in
unknown and un-instrumented environments, these methods
are not applicable. In these settings, one can employ si-
multaneous localization and mapping (SLAM)-type methods
(see. e.g., [4]–[6] and references therein), which jointly
estimate the camera trajectory and features’ positions, or
visual odometry (VO)-type methods [7]–[12], which track
the pose of the camera only. In this work, our interest is

in the latter type of methods. We are not interested in the
problem of loop-closure detection, or in producing a map of
the environment. Instead, we focus on the task of performing
VO in real time, using the measurements from a monocular
or stereo camera only.

Several methods exist that perform VO by estimating
the camera displacement using the images recorded at two
consecutive time steps (e.g., [12]–[14]). In these methods,
when a single camera is used, additional sensors, scene
information, or a statistical motion model must be employed
to infer scale. By using only consecutive images, these
methods attain low computational cost, but this often comes
at the expense of accuracy. Due to the nonlinear nature of the
camera measurement models and the existence of outliers in
the image data, such methods may also be prone to failure.

At the other end of the spectrum, the “golden standard”
method for vision-based estimation is bundle adjustment
(e.g., [15] and references therein). In bundle adjustment the
entire history of camera states and feature positions is jointly
optimized using nonlinear minimization methods. This can
result in high precision, but bundle-adjustment methods can-
not operate in real-time in large-scale environments, as their
computational complexity continuously increases over time.
Incremental implementation of the nonlinear minimization is
possible [16], but even in this case the computational cost
increases in time, and eventually becomes unsuitable for real-
time applications.

As a compromise between bundle adjustment and using
pairwise displacement estimates, methods that perform opti-
mization over a sliding window of states have recently gained
popularity (see, e.g., [9]–[11], [17]–[20] and references
therein). These techniques remove older states (features
and/or camera poses) from the actively estimated state vector,
and carry out iterative minimization to produce estimates
for the most recent states. The use of a sliding window
of more than two camera poses increases the accuracy and
stability of these algorithms. At the same time, the removal
of older states means that these methods have a bounded
computational cost, which makes them suitable for real-
time implementation. In fact, by changing the size of the
sliding window we can adaptively control the computational
requirements, which is an important characteristic of sliding-
window algorithms. In this paper, we focus on the properties
of these methods.

In addition to differences in the visual front end (i.e.,
the algorithms used for feature extraction and matching)
the main difference between the various sliding-window



algorithms is the way in which older states are removed.
It is well-known that the theoretically “correct” way of
removing states from the state vector is the process of
marginalization [18], [19], [21], [22]. When marginalization
is carried out the uncertainty of the discarded states is
properly modelled in the estimator’s equations, which is a
key requirement for precise estimation. However, several suc-
cessful methods do not follow this approach, and simply fix
the values of the states that are removed from the state vector,
using them to “bootstrap” the trajectory [9], [10], [17],
[20]. In certain cases this is done purely for simplification
of the algorithms and to improve computational efficiency.
However, in [9] and [10] it is reported that this is done to
reduce the estimation error. This fact, which appears to be
counterintuitive at first, suggests that the “standard” way of
carrying out marginalization may produce inaccuracies.

We note that in our previous work [19] we have shown
that when a fixed-lag smoother is employed for tracking
the motion of a vehicle using a camera and an IMU, the
standard marginalization approach results in inconsistency1.
Specifically, due to the marginalization process, two different
estimates of the same states are used in computing certain
Jacobian matrices in the estimator. In [19] we showed that
this causes an infusion of information along directions of
the state space where no actual information is provided
by the measurements (the un-observable directions). This
“artificial” information causes the estimates’ covariance to
be underestimated, and results in inconsistency. Moreover,
since the accuracy of different states is misrepresented, the
estimates’ accuracy is also reduced.

Motivated by the observations of [9] and [10] on sliding-
window VO, and the results of [19] on fixed lag smoothing
using visual and inertial measurements, in this paper we
carry out an analysis of the effects of marginalization in
VO. Our results show that, similarly to the case of fixed-lag
smoothing, even when only camera measurements are used
for estimation, the same infusion of “artificial information”
takes place. This degrades both the consistency and the
accuracy of the trajectory estimates. Additionally, building
on this analysis, we present a simple solution to the problem.
This solution consists of ensuring that only one estimate
of any given state variable is used in computing Jacobian
matrices. The resulting algorithm is shown to perform better
than competing approaches, in both simulation results and
real-world experiments.

II. SLIDING-WINDOW VISUAL ODOMETRY

In this section, we present the “standard” algorithm for
sliding window visual odometry [18], [19]. We start by
discussing bundle adjustment, which serves to introduce
the notation and will also be useful for our derivations in
Section III.

1A recursive estimator is termed consistent when the state estimation
errors are zero mean, and their covariance equals the one reported by the
estimator [23, Section 5.4].

A. Bundle adjustment

We consider the case where a monocular or stereo camera
moves in space, observing unknown features. The camera
state vector at time-step i, ci, consists of the sensor orienta-
tion and position with respect to a global frame of reference:

ci =
[
qCi

pCi

]
(1)

where we have employed a unit-quaternion description of
orientation, qCi [24]. Assuming calibrated cameras, the
observation of feature j at time-step i is described by the
perspective camera model:

zij = h
(
C(qCi)(pLj − pCi)

)
+ nij (2)

where pLj
is the 3D feature position vector, C(qCi

) is
the rotation matrix corresponding to qCi

(i.e., the rota-
tion matrix from the global frame to the camera frame at
time-step i), h(·) is the perspective measurement function:
h(p) = [p1/p3 p2/p3]T , and finally nij ∼ N (02×1,Rij)
is the measurement noise vector, modeled as a zero-mean
Gaussian variable with covariance matrix Rij . If a stereo
camera is used, the state vector in (1) represents the pose
of one of the two sensors (e.g., the left one), and we obtain
two measurements of the form (2), one from each camera.
When performing bundle adjustment at time-step k, we
simultaneously estimate the entire history of camera poses,
c0:k = {c0, . . . , ck}, as well as the positions of all features
observed by the camera, l1:n = {pL1 , . . . ,pLn}. We denote
the state vector containing all these quantities by xk. The
optimal solution is computed by maximizing the following
pdf:

p(xk|z0:k) = p(xk)
∏

(i,j)∈Sa(k)

p(zij |ci,pLj ) (3)

where the set Sa(k) contains the pairs of indices (i, j)
that describe all the feature observations through time k,
p(zij |ci,pLj ) is the Gaussian measurement-likelihood pdf,
and p(xk) is a pdf describing the prior information for the
state vector. For instance, this may express our knowledge
of the first camera state, constraints on the global scale in
the case of monocular VO, etc. For clarity of presentation,
we assume here that this prior information is modelled as a
probabilistic constraint, f(xk) ∼ N (f̂ ,Rp). The maximiza-
tion of the above pdf is equivalent to the minimization of
the following cost function:

c(xk) =
1
2
||f(xk)− f̂ ||Rp +

1
2

∑

(i,j)∈Sa(k)

||zij − h(ci,pLj )||Rij

where we have employed the notation ||a||M = aT M−1a.
c(xk) is a nonlinear cost function, which can be minimized

using iterative Gauss-Newton minimization [15]. At the `-th
iteration of this method, a correction, ∆x(`), to the current
estimate, x(`)

k , is computed by solving the linear system:

A(`)∆x(`) = −b(`) (4)



where

A(`) = FT R−1
p F +

∑

(i,j)∈Sa(k)

H(`)T
ij R−1

ij H(`)
ij (5)

b(`) = FT R−1
p (f(x(`)

k )− f̂)

−
∑

(i,j)∈Sa(k)

H(`)T
ij R−1

ij

(
zij − h(c(`)

i ,p(`)
Lj

)
)

(6)

In the above expressions, F is the Jacobian of the function
f(xk) with respect to xk, and H(`)

ij is the Jacobian of
the measurement function h(ci,pLj

) with respect to xk,
evaluated at x(`)

k . Since the measurement model involves
only one camera pose and one feature, H(`)

ij has the following
sparse structure:

H(`)
ij =

[
0 . . . HLij

(x(`)
k ) . . . HCij (x

(`)
k ) . . . 0

]

(7)

where HLij
and HCij

are the Jacobians with respect to the
feature position and the camera pose, respectively:

HCij
(xk) = ΓijC(qCi

)
[ b(pLj

− pCi
)×cCT (qCi

) −I3

]

HLij
(xk) = ΓijC(qCi

) (8)

Γij =
∂h(p)

∂p

∣∣∣∣∣
p=C(qCi

)(pLj
−pCi

)

where I3 denotes the 3× 3 identity matrix, and ba×c is the
skew-symmetric matrix associated with the vector a. After
solving (4) the correction is applied to the state, and the
process is repeated until convergence.

B. Marginalization of old states

By exploiting the sparse structure of A(`), we can speed up
the solution of the linear system (4) considerably. However,
as the camera continuously moves and observes new features,
the size of the state vector xk constantly increases. There-
fore, in order to obtain a real-time algorithm with bounded
computational complexity, we marginalize out older states.

We consider the following scenario: The moving camera
observes features during the time interval [0, k], and bundle
adjustment is carried out at time-step k. Then, the states
xm = {c0, . . . , cm−1,pL1 , . . . ,pLq} (i.e., the m oldest
camera poses and the q oldest landmarks, which we can no
longer observe) are marginalized out, and only the states
xr = {cm, . . . , ck,pLq+1 , . . . ,pLn} remain active in the
sliding window. After marginalization, the states xm and
all the measurements that involve them are discarded. We
will use Sm to denote the set of indices (i, j) describing
all the camera observations that involve either marginalized
camera poses or marginalized landmarks, or both. These
measurements provide information that is useful for the es-
timation of the remaining states, and this information should
not be completely discarded. To express this information,
we maintain in memory a vector bp(k) and a matrix Ap(k),
which are defined as follows:

bp(k) = bmr(k)−Arm(k)Amm(k)
−1bmm(k) (9)

Ap(k) = Arr(k)−Arm(k)Amm(k)
−1Amr(k) (10)

where

bm(k) =
[
bmm(k)

bmr(k)

]
(11)

= FT R−1
p (f(x̂k(k))− f̂)

−
∑

(i,j)∈Sm

HT
ij(k)R−1

ij

(
zij − h(ĉi(k), p̂Lj (k))

)
(12)

Am(k) =
[
Amm(k) Amr(k)

Arm(k) Arr(k)

]
(13)

= FT R−1
p F +

∑

(i,j)∈Sm

Hij(k)R−1
ij Hij(k) (14)

In the above, the size of the matrix partitions is defined by
the length of the vectors xm and xr, and all quantities are
evaluated using the state estimate x̂k(k) (i.e., the estimate
of xk computed using bundle adjustment at time-step k).
We point out that the matrix Am represents the information
contained in the prior and the discarded measurements, and
Ap(k) is its Schur complement. Thus, as desired, Ap(k)

represents all the information that the prior and the discarded
measurements provide for estimating xr.

Proceeding further, as the camera keeps moving and
observing features in the time interval [k +1, k′], the sliding
window of states is augmented by the new camera and
landmark states xn = {ck+1, . . . , ck′ ,pLn+1 , . . . ,pLn′}.
Now, at time-step k′, the sliding window contains the states
xr and xn. To obtain an estimate for the active state vector we
once again employ iterative minimization of an appropriate
cost function [19]. Similarly to the previous case, at the `-
th iteration the correction to the active states {xr,xn} is
computed by solving the linear system A(`)∆x = −b(`),
with:

b(`) =ΠT
r bp(k) + ΠT

r Ap(k)(x(`)
r − x̂r(k))

−
∑

(i,j)∈Sa(k′)

H(`)T
ij R−1

ij

(
zij − h(c(`)

i ,p(`)
Lj

)
)

(15)

A(`) = ΠT
r Ap(k)Πr +

∑

(i,j)∈Sa(k′)

H(`)T
ij R−1

ij H(`)
ij (16)

where the set Sa(k′) contains the (i, j) indices corresponding
to all the active measurements at time-step k′ (i.e., all
measurements involving states in xr and xn), and Πr =
[Idimxr 0]. After the iterations have converged, we can again
marginalize out some older states if desired, and proceed in
the same way.

III. ESTIMATOR CONSISTENCY

This section presents the main results of this paper, which
show the effects of marginalization on the estimator’s consis-
tency. Specifically, we prove that due to the marginalization
the rank of the information matrix associated with the feature
measurements is erroneously increased.

We start by considering what this information matrix
would be if we had not performed marginalization, and
instead carried out bundle adjustment for the entire trajectory
in the time interval [0, k′]. In that case, the matrix describing



the information given by the measurements for the camera
poses and feature positions would be given by:

Jba(k′) =
∑

(i,j)∈S
HT

ij(k′)R−1
ij Hij(k′) (17)

where S = Sa(k′)
⋃Sm is the set describing all the available

measurements in [0, k′]. The above expression is the sum of
the information contribution of each of these measurements.

Let us now return to the scenario described in the pre-
ceding section, i.e., marginalization of the states xm at time-
step k, and a new estimation step at time-step k′. In this
case the estimator uses the same measurements, and thus the
information matrix must contain a summation of the same
number of terms as above. However, the important distinction
is that the information contribution of the measurements that
were discarded upon marginalization was evaluated at time-
step k, and expressed by the matrix Ap(k) (see (10) and (16)).
Thus, the information matrix for the entire history of states
in [0, k′] is given by:

Jmar(k
′)=

∑

(i,j)∈Sm

HT
ij(k)R−1

ij Hij(k)+
∑

(i,j)∈Sa(k′)

HT
ij(k′)R−1

ij Hij(k′)

(18)
Comparing (17) and (18) we clearly see that, since S =
Sa(k′)

⋃Sm, the only difference between these two infor-
mation matrices are the state estimates used for computing
the Jacobians. Apart from that, the structure of the matrices
is the same in both cases. Yet, perhaps surprisingly, the mere
fact that the Jacobians are evaluated using different state
estimates causes the rank of these two matrices to differ.
Specifically, in Section III-A, we prove that

rank(Jmar(k
′)) = rank(Jba(k′)) + 3 (19)

In other words, when marginalization takes place, the estima-
tor appears to have more information (i.e., information along
more directions of the state space) than when we perform
bundle adjustment. Clearly, this increase is incorrect, since
the estimators use the same measurements in both cases, and
thus have access to the same information.

Since the sliding-window VO estimator believes it has
more information, it underestimates the uncertainty of the
state estimates it produces, i.e., it becomes inconsistent.
Moreover, this over-confidence in the estimates’ accuracy is
not uniform: as discussed in Section III-B, the estimator mis-
takenly “believes” that the global orientation is observable.
It therefore has undue confidence in its orientation estimates,
which ultimately degrades the accuracy of the computed
state estimates, as corrections are not properly applied to all
states. This reasoning shows that the artificial increase in the
rank of the information matrix leads both to inconsistency
and to suboptimal estimates. This is corroborated by the
experimental results of Section V.

It is worth pointing out that the results of our analysis are
not restricted to the particular choice of states to marginalize.
Even though we here focus on sliding-window estimation,
where the oldest states are always marginalized, the same
increase in the rank of the information matrix would occur
if one chooses the states to marginalize in a different way

(for instance, a common approach is to keep a selection of
keyframes evenly spread in time and/or space).

A. Proof of (19)

We now prove (19) for the case in which the visual
measurements are recorded by a stereo pair of cameras. Due
to limited space some of the intermediate results are omitted,
and the interested reader is referred to [25] for the full details.

We start by noting that Jba(k′) and Jmar(k
′) can be written

as follows:

Jba(k′) = HT
(k′)Diag(R−1

ij )H(k′) (20)

Jmar(k
′) = HT

(k, k′)Diag(R−1
ij )H(k, k′) (21)

where Diag(·) denotes a block diagonal matrix, H(k′) is
a matrix with block rows Hij(k′), for all (i, j) ∈ S , while
H(k, k′) is a matrix with block rows Hij(k), for (i, j) ∈ Sm,
and Hij(k′), for (i, j) ∈ Sa(k′).

We see that, similarly to Jba(k′) and Jmar(k
′), the matrices

H(k′) and H(k, k′) have the same structure, and the only
difference lies in the state estimates at which the Jacobians
are evaluated. In the matrix H(k, k′) the Jacobians of all
measurements that involve marginalized states (the matrices
Hij where (i, j) ∈ Sm) are evaluated using the state
estimates available at time-step k, while all other Jacobians
are evaluated using the estimates available at time-step k′.
On the other hand, in the matrix H(k′), all Jacobians are
evaluated using the latest state estimates at time-step k′.

Proceeding further, we note that since Diag(R−1
ij ) is a

full-rank matrix, we have that rank(Jba(k′)) = rank(H(k′)),
and rank(Jmar(k

′)) = rank(H(k, k′)). Thus, to prove (19),
it suffices to show that

rank(H(k, k′)) = rank(H(k′)) + 3 (22)

To this end, we utilize the structure of the measurement
Jacobians (see (8)) to factorize the matrix H(k′) as:

H(k′) = D(k′)H̄(k′) (23)

where D(k′) = Diag
(
HLij (k′)

)
, (i, j) ∈ S , and H̄(k′) is a

matrix with block rows given by

H̄ij(k′) =
[
0 . . . H̄Cij (k′) . . . I3 . . . 0

]
(24)

H̄Cij (k′) =
[b(p̂Lj (k′)− p̂Ci (k

′))×cCT (q̂Ci (k
′)) −I3

]

A similar factorization can be obtained for H(k, k′) =
D(k, k′)H̄(k, k′). We can now employ the following result,
which allows us to compute the rank of the product of two
matrices [26, 4.5.1]:

rank(AB) = rank(B)− dim(N (A)
⋂
R(B)) (25)

where N and R denote the null space and the range of a
matrix, respectively. An important intermediate result, whose
proof is given in [25], is the following:

Lemma 1: When stereo camera measurements are used,

dim(N (D(k′))
⋂
R(H̄(k′))) = 0 (26)

dim(N (D(k, k′))
⋂
R(H̄(k, k′))) = 0 (27)



Thus, by combining the results of Lemma 1, along with
the decomposition in (23) and the property (25), we see
that rank(H(k′)) = rank(H̄(k′)) and rank(H(k, k′)) =
rank(H̄(k, k′)). Thus, to prove (22) it suffices to show that

rank(H̄(k, k′)) = rank(H̄(k′)) + 3 (28)

To prove this result, we first apply elementary row and
column operations to the matrix H̄(k′), in order to compute
its rank. The intermediate steps are straightforward but the
matrices involved are quite large, and therefore the proof is
detailed in [25]. There, it is shown that when at least three
non-collinear features are available, it is:

rank(H̄(k′)) = 3n′ + 6k′ (29)

Note that the state vector consists of n′ landmarks and k′+1
camera poses, which means that the matrix H̄(k′) has 3n′ +
6k′+6 columns, equal to the number of state variables. Thus,
the above result shows that H̄(k′) is rank deficient by 6.

Proceeding with the proof of (28), we apply similar
elementary row and column operations to the matrix H̄(k, k′)
to compute its rank. However, recall that in this matrix some
of the Jacobians are evaluated using the state estimates at
time step k, and some using the state estimates at time-
step k′. As a result, for certain state variables, two different
estimates appear in the equations. This means that certain
cancellations that occurred when applying elementary row
and column operations in H̄(k′) do not happen when these
operations are applied to H̄(k, k′). As a result, the rank of
the matrix is increased. Specifically, in [25] it is shown that:

rank(H̄(k, k′)) = 3n′ + 6k′ + 3 (30)

This result, in conjunction with (29), completes the proof.

B. Physical interpretation

Equation (19) shows that when marginalization takes place
the estimator erroneously believes to have information along
three more directions of the state space. To identify these
directions, we can examine the nullspaces of the matrices
Jmar(k

′) and Jba(k′). First, note that in the preceding section
it was shown that rank(Jba(k′)) = rank(H̄(k′)) = 3n′+6k′.
Since Jba(k′) is a (3n′+6k′+6)×(3n′+6k′+6) matrix, this
result means that Jba(k′) has a nullspace of dimension 6. To
obtain a basis for this nullspace, we define the (3n′ + 6k′ +
6)× 6 matrix

N(x̂m(k′), x̂r(k′), x̂n(k′)) =




I3 −bp̂L1 (k′)×c
...

...
I3 −bp̂Ln′ (k

′)×c
03×3 C(q̂C0 (k′))
I3 −bp̂C0 (k′)×c
...

...
03×3 C(q̂Ck′ (k

′))
I3 −bp̂Ck′ (k

′)×c




(31)

It is easy to verify that the following property holds (here we
are assuming a state variable ordering of all features followed

by all camera poses):

Jba(k′) ·N(x̂m(k′), x̂r(k′), x̂n(k′)) = 0

which means that the columns of the matrix N (which
are linearly independent) form a basis for the nullspace of
Jba(k′). The nullspace of the information matrix Jba(k′)
describes changes in the state that cannot be detected using
the available measurements (i.e., the unobservable subspace).
Close examination of the columns of N reveals that the
first block column corresponds to global translations of the
entire state vector, while the second corresponds to global
rotations. This should come as no surprise, since by using
only measurements of unknown features only the relative
camera motion can be determined, and not the global pose.

Let us now examine the situation when marginalization
takes place. In this case, based on the results of the preceding
section, we see that rank(Jmar(k

′)) = 3n′+6k′+3, which in
turn means that the nullspace of Jmar(k

′) is only of dimen-
sion three. Multiplying Jmar(k

′) with the first block column
(first three columns) of the matrix N yields a zero matrix, and
thus we conclude that the nullspace of Jmar(k

′) is spanned by
the first three columns of N. We thus see that the directions
that correspond to the global orientation are “missing” from
the nullspace of the information matrix. In other words, the
sliding-window VO estimator incorrectly “believes” that the
global orientation is observable. As discussed in Section III,
this results in inconsistent estimates, and a degradation of
accuracy.

IV. IMPROVING THE ESTIMATOR’S PERFORMANCE

In this section we describe a simple modification of
the standard sliding-window VO algorithm that prevents
the increase of the rank of the measurement information
matrix, and improves the performance of the estimator. As
shown in Section III-A, the erroneous increase in the rank
of the information matrix is caused by the fact that two
different estimates of certain states appear in the measure-
ment Jacobians. Specifically, these are the camera poses
and/or landmarks in xr that are “connected” to marginalized
states via measurements in the set Sm. For example, let us
assume that the camera pose ci? is one of the camera poses
that remains in the sliding window after marginalization at
time step k. Moreover, consider that the feature pLj? was
observed from this camera pose and was marginalized at time
step k. Then the information matrix HT

i?j? (k)R−1
i?j?Hi?j? (k)

will appear in the summation in (10), and will be used
to compute the matrix Ap(k). Later on, when we perform
iterative estimation at time step k′, the camera pose ci? is
still in the sliding window, but now the Jacobians that involve
this pose are evaluated using the estimate ĉi? (k′). Thus, two
different estimates of ci? are used for Jacobian computations.

To avoid this problem, a simple solution is to change
the state estimates that are used for Jacobian computations.
Specifically, when an active state is connected to already
marginalized states via measurements (e.g., ci? in the above
example), then we use the estimate that was available at
the time of marginalization (e.g., ĉi? (k)) for all subsequent
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Fig. 1: Simulation setup and example results for stereo-based VO. (a) The simulation environment and the true trajectory
(circle) (b) The trajectory estimated by S-VO, in one example Monte-Carlo trial (red) (c) The trajectory estimated by M-VO,
in the same trial (green).
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Fig. 2: Simulation results for VO using a monocular camera.
From top to bottom: (a) The average value of the camera-
pose NEES over time (b) The RMS errors of the camera
attitude over time (c) The RMS errors of the camera position
over time.

Jacobian computations. In this way only a single estimate
of this state appears in the information matrix, and the
increase in rank is averted. We stress that we use these
“older” estimates when computing the Jacobians only, and
we still allow the actual estimates to be updated normally
in the Gauss-Newton iterations. Clearly, the use of “older”
estimates for computing Jacobians will inevitably lead to
larger linearization errors. However, as indicated by the
results presented in the next section, the effect of this loss
of linearization accuracy is not significant, while avoiding
the creation of fictitious information leads to significantly
improved precision.

V. RESULTS

A. Simulation results

In this section, we present simulation results that demon-
strate the performance of the modified sliding-window VO
algorithm presented in Section IV. In our simulation setup,
we consider a camera (stereo or monocular) that moves along
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Fig. 3: Simulation results for VO using a stereo camera. From
top to bottom: (a) The average value of the camera-pose
NEES over time (b) The RMS errors of the camera attitude
over time (c) The RMS errors of the camera position over
time.

a circular trajectory of radius 4 m in a 24 × 24 × 5 m
room with 600 visual point features randomly placed near
the walls (as shown in Fig. 1a). The camera moves with
constant velocity and angular velocity of 2 m/s and 0.5 rad/s,
respectively. The camera frame rate is 10 Hz and 5 Hz for
monocular and stereo camera, respectively, the field of view
is 45◦, the focal length is 500 pixels, and the measurement
noise standard deviation is 1 pixel. For the simulations with
a stereo camera, we set the stereo baseline equal to 0.12 m.
The features can be observed for up to 30 consecutive camera
poses. Therefore, in the sliding-window VO we choose a
sliding window containing the 40 latest camera poses and
the landmarks seen in these poses. In these simulations, we
compare the performance of (i) the modified sliding-window
VO algorithm (termed M-VO) presented in Section IV, (ii)
sliding-window VO with the standard linearization approach
(termed S-VO), (iii) sliding-window VO with fixed estimates
for the previous states, similarly to [10] (termed FE-VO),
and finally, (iv) the standard bundle adjustment (termed BA)



that estimates the entire history of the camera poses (i.e., no
marginalization).

Fig. 2 shows results using a monocular camera for VO, and
Fig. 3 shows results for the case of stereo. In both figures,
the consistency of the estimators is measured by the average
normalized estimation error squared (NEES) for the latest
camera pose, and accuracy is measured by the root mean
squared (RMS) error of the orientation and position. All
results are averaged over 50 Monte-Carlo runs. In these plots,
we can observe that the M-VO algorithm clearly outperforms
S-VO, both in terms of consistency (i.e., NEES) and accuracy
(i.e., RMS errors). When using a monocular camera, the
average NEES over all Monte-Carlo runs and all timesteps
equals 6.090 for M-VO, very close to 6.017, which is the
value obtained for BA. The average NEES for S-VO is a
staggering 2350. Since the pose error state is of dimension 6,
the “ideal” NEES value would equal 6. Similarly, when using
a stereo camera, the average NEES equals 6.351, 6.497, and
6435 for the BA, M-VO, and S-VO algorithms, respectively.
Most importantly, in both monocular and stereo VO, we see
that the performance of the new M-VO algorithm is almost
indistinguishable from that of the “golden standard” of BA,
even though its computational cost is orders of magnitude
smaller.

For illustration purposes, two sample estimated trajec-
tories, computed by the S-VO and M-VO algorithms re-
spectively, are also provided in Fig. 1. This plot clearly
demonstrates that the M-VO method can yield results that
are substantially more accurate than those of the standard
method. In particular, as shown in Fig. 1, the position errors
in the vertical axis are significantly larger for S-VO.

We now turn our attention to the FE-VO method. This
method shares similar characteristics to our M-VO, in the
sense that it uses “older” estimates of previous states in
computing Jacobians. This improves the consistency of the
method, as shown in Figs. 2 and 3. Specifically, FE-VO has
an average NEES of 68.68 and 52.48, respectively, in the
monocular and stereo cases. In terms of RMS errors, FE-VO
also outperforms S-VO significantly. However, both in terms
of NEES and RMS errors, the FE-VO approach performs
worse than the proposed M-VO. This can be explained by
the fact that in FE-VO the estimates of the older states are
fixed and not updated, which degrades accuracy. In contrast,
in the M-VO method the older states are updated normally,
thus attaining higher precision.

B. Real-world experiment

The performance of the proposed algorithm is also val-
idated in a real-world setting. For this purpose, we tested
the algorithm on Epoch A (Campus) of the New College
dataset [27], using stereo images. Only the first epoch is
used because when the robot passes through a dark tunnel
to a different area, no point features can be detected in the
captured images. Since the stereo camera is the sole sensor
used in this experiment, it is impossible for the algorithm to
recover the camera pose. In the section of the dataset that we
used, the camera moved for about 7 min, performing three

(a) Left (b) Right

(c) Left (d) Right

Fig. 4: Sample stereo images from the New College dataset.

loops around the main oval quad in New College, Oxford.
The dataset consists of more than 15000 images of resolution
512 × 384 pixels, captured by a PointGrey Bumblebee
stereo rig at 20 Hz. Features are extracted using the Harris
corner detector [28], and matched using normalized cross-
correlation.

In Fig. 5, the trajectory estimates of the S-VO and the M-
VO are shown in red and blue, respectively. Unfortunately,
ground truth is not available for the New College dataset,
but the camera was driven so that the trajectory in each loop
was identical. Compared with previous results on the New
College dataset [29], the results obtained by the S-VO and
M-VO are similar to the best estimates. It should be noted
that only ego-motion is estimated from stereo images, and we
do not address loop closure, compared to [29]. By inspection
of the trajectory estimates, we can deduce that the position
errors of the S-VO are larger than M-VO, both in the x-
y plane and along the z-axis. In particular, the side views
of the trajectories in Fig. 5b and the elevation estimate plot
in Fig. 5c show that the accuracy of the two VO methods
is very different in the vertical direction. Since the camera
moves on flat ground, its elevation (z coordinate) should
remain approximately constant throughout its motion. The
results show that by using the prior linearization points to
preserve the observability properties of the estimator, we
achieve better overall estimation accuracy.

VI. CONCLUSIONS

In this paper, we presented an analysis of the properties
of sliding-window minimization for visual odometry. Estima-
tors that employ this approach attain bounded computational
cost by marginalizing out older states, so as to maintain an
approximately constant number of states active at all times.
By analyzing the details of the Jacobian computations needed
for the marginalization equations, we have proven that
the standard linearization method will introduce erroneous
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Fig. 5: Real-world results for VO using a stereo camera.

information into the estimator, resulting in inconsistency.
Based on this analysis, we proposed a modified linearization
scheme, to prevent the infusion of artificial information,
and improve estimation performance. Our simulation tests
and real-world experiments demonstrated that this modified
sliding-window VO estimator outperforms competing meth-
ods, both in terms of accuracy and consistency.
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