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Abstract— This paper focuses on motion estimation using
inertial measurements and observations of naturally occurring
point features. To date, this task has primarily been addressed
using filtering methods, which track the system state start-
ing from known initial conditions. However, when no prior
knowledge of the initial system state is available, (e.g., at the
onset of the system’s operation), the existing approaches are not
applicable. To address this problem, in this work we present
algorithms for computing the system’s observable quantities
(platform attitude and velocity, feature positions, and IMU-
camera calibration) directly from the sensor measurements,
without any prior knowledge. A key contribution of this work
is a convex-optimization based algorithm for computing the
rotation matrix between the camera and IMU. We show that
once this rotation matrix has been computed, all remaining
quantities can be determined by solving a quadratically con-
strained least-squares problem. To increase their accuracy, the
initial estimates are refined by an iterative maximum-likelihood
estimator.

I. INTRODUCTION

In recent years, there has been growing interest in methods
for motion estimation using visual and inertial measure-
ments, a task often termed termed vision-aided inertial
navigation (see, e.g. [1]–[7] and references therein). Many
reasons exist for this. First, both cameras and MEMS inertial
measurement units (IMUs) are compact, inexpensive, and
have low power requirements. Second, these sensors can
operate in virtually any environment, and allow for full-3D
pose estimation, thus providing a very versatile solution for
navigation. Third, in recent years we have seen a prolif-
eration of devices (e.g., mobile phones) that contain both
cameras and inertial sensors as part of their standard sensor
payload. These devices are gradually becoming ubiquitous,
and necessitate new techniques that will allow high-precision
navigation in GPS-denied environments.

The vast majority of existing techniques for navigation
using camera and IMU measurements employ either a recur-
sive Bayesian estimation approach [1]–[4], or a smoothing
formulation [5]. In both cases, an accurate initial guess (prior
estimate) for the state is necessary for reliable estimation.
This is due to the fact that both types of methods rely on
linearization of the measurement models, and thus in the
absence of an accurate initial estimate, large linearization
errors can lead to divergence. In current practice, to initialize
any of the state estimation methods discussed above, one
typically uses domain-specific knowledge on a case-by-case
basis. For instance, in certain applications, additional sensors
(e.g., inclinometer and/or GPS) may be available, or it may
be known that the platform is initially at rest. However, such
methods are not generally applicable.

To address this limitation, in recent work [8]–[10] algo-
rithms for initializing the state of the system based only on
observations of naturally occurring features were proposed.
These methods provide initial estimates for the attitude (roll
and pitch) of the moving platform, its velocity, the positions
of the features observed by the camera, and, in the case
of [9], for the accelerometer bias. For computing these
estimates, these methods assume that the camera-to-IMU
transformation (rotation and translation) is known a priori.
While this may be a valid requirement in cases where the
platform used for navigation is known, it is not always met.
Consider for example the case where the user of a mobile
phone wants to use the device for indoor navigation. Ideally,
the user should be able to simply download an application
to his/her device, and be immediately able to use it for
navigation, without any lengthy initial setup process. The
easiest way to achieve this would be for the navigation
algorithm to be able to estimate all necessary parameters,
including the camera-to-IMU transformation, without the
need for a prior initial guess. This is the problem addressed
in this paper.

We here propose algorithms that employ the observations
of naturally occurring point features, in conjunction with the
inertial measurements, for estimating (i) the camera attitude,
(ii) the camera velocity, (iii) the position of the features, and
(iv) the camera-to-IMU transformation. A straightforward
approach to this problem would be to formulate it as a
nonlinear-least-squares problem, where we try to minimize
the features’ reprojection errors with respect to the unknown
parameters. This is certainly a valid approach, but its limi-
tation is that for it to converge to meaningful estimates, it
requires a good initial guess for the unknowns.

The main contribution of this paper are methods for
providing such an initial estimate. As shown in previous
work [8], [9], the camera velocity and attitude as well as the
feature positions can be analytically computed by solving an
appropriately formulated linear system. We here show that
the camera-to-IMU translation can also be computed by a
similar linear system, while for the camera-to-IMU rotation
we present two different methods: The first requires five
or more features observed in the images, and computes the
unit quaternion representing the camera-to-IMU rotation as
the solution to a linear least-squares problem. The second
method requires just two (or more) features, and employs a
sequence of convex problems for obtaining the solution.

The initial estimates obtained as discussed above have
the advantage that they are computed using the sensor data
directly, but are not statistically optimal. Therefore, they are



subsequently refined using a maximum-likelihood estimator
(MLE), whose formulation leads to a nonlinear least squares
problem, solved using the Levenberg-Marquardt algorithm.
In addition to providing the statistically optimal estimates
for the unknown parameters, the MLE also provides us with
the covariance matrix of the estimation errors. This makes
it possible to test the accuracy of estimation in different
settings, and draw practically useful conclusions about the
quality of estimation one can expect. These results, as well
as tests demonstrating the performance of both the direct
solution methods and the iterative MLE, are presented in
Section VII.

II. RELATED WORK

The observability properties of the vision-aided inertial
navigation system have been examined in [1], [2]. These
works show that, in the absence of reference points with
known global coordinates, the global position of the IMU,
as well as the rotation about the axis of gravity (i.e., the
yaw) are not observable. On the other hand, the following
quantities are in general observable:
(O1) The IMU attitude with respect to the horizontal plane

(i.e., the roll and pitch),
(O2) The IMU trajectory (position, velocity, and orientation)

with respect to the initial IMU frame,
(O3) The feature positions with respect to the initial IMU

frame.
(O4) The transformation between the IMU and camera

frames (ie., the camera-to-IMU calibration), and
(O5) The IMU gyroscope and accelerometer biases.

As discussed in Section I, our focus in this paper is on
estimating the quantities (O1)-(O4) above. We assume that an
estimate for the IMU biases is already available (e.g., these
biases can be assumed to be close to zero initially, and then
high-precision estimates for them can be computed in the
MLE refinement described in Section VI). The observability
results of [1], [2] prove that (barring singular trajectories
such as constant-velocity motion) we are able to estimate
the quantities of interest, but do not show how these can be
computed directly from the sensor data and without prior
estimates.

If the camera-to-IMU transformation was known, one
could apply the methods of [8], [9] to estimate the quantities
(O1)-(O3). To compute this transformation, [11] and [12]
present methods that rely on observation of a known cali-
bration pattern (and the use of a specialized turntable in the
case of [11]). While these approaches would be well-suited
for a laboratory setting, the need for specialized equipment
makes them less suitable for widespread use. In [1], [2],
[13], [14], Kalman filter-based estimators are employed for
estimating the camera-to-IMU transformation, but since these
require a good initial guess, they are not applicable in
the case of interest where no prior knowledge exists. In
contrast to all aforementioned approaches, we here present
methods for estimating the camera-to-IMU transformation
directly from the sensor measurements, without the need for
prior knowledge, and using only observations of naturally

occurring features. In what follows, we present the details
of our work.

III. PROBLEM FORMULATION

In this section we present the problem formulation and the
measurement equations for the camera and IMU. We show
that all the quantities we seek to estimate ((O1)-(O4) defined
in Section II) can be linearly estimated, except for the rota-
tion between the camera and IMU. In Section IV we show
how this rotation can be recovered from the measurements,
and finally in Section VI we present a maximum-likelihood
estimator that refines these initial estimates to provide high-
precision estimates of all the states in the system.

Consider the case where N images are recorded at the
time instants t0, t1, . . . , tN−1. By employing a suitable im-
age processing algorithm (e.g., KLT tracking [15] or SIFT
keypoint extraction and matching [16]), we track M feature
points in the images. In addition to the feature observations,
the IMU (gyroscope and accelerometer) measurements for
the time interval [t0, tN−1] are available. The measurements
of the IMU gyroscopes and accelerometers are given by the
following equations [17]:

ωm(t) = Bω(t) + nω(t) (1)

am(t) = B
GC(t)(Ga(t)− Gg) + na(t) (2)

where1 Bω(t) denotes the 3D rotational velocity vector
expressed in the IMU frame, Ga(t) is the IMU acceleration in
the global frame, Gg is the gravitational acceleration vector
expressed in the global frame, while nω, and na represent
the noise in the gyroscope and accelerometer measurements,
respectively. We here assume that the biases are known at
least approximately (e.g., from prior sensor calibration) and
have been removed from the IMU measurements. In the
remainder of this section we will ignore the noise in the
measurements, and formulate a linear system of equations
that will allow us to estimate all quantities except for the
rotation matrix between the camera and IMU.

To estimate the IMU orientation change in the interval
[t0, ti], we integrate the following differential equation [18]:

B0
B Ċ(t) = −B0

B C(t)bωm(t)×c , B0
B C(t0) = I3 (3)

in [t0, ti]. This yields the rotation matrix B0
Bi

C = B0
B C(ti),

which describes the IMU rotation between times t0 and ti.
The global position of the IMU at time ti is given by:

Gp(ti) = Gp(t0) + Gv(t0)∆ti +
∫ ti

t0

∫ τ

t0

Ga(ς)dςdτ

where Gp(t0) is the initial position, Gv(t0) is the initial
velocity, and ∆ti = ti−t0. Using (2) and the above equation
we obtain:

Gp(ti) = Gp(t0) + Gv(t0)∆ti + Gg
∆t2i
2

+ G
B0

C s(ti) (4)

1Throughout this paper, the IMU (body) frame is denoted by {B}, the
camera frame by {C}, and the global (inertial) frame by {G}. Xy denotes
the vector y expressed with respect to frame {X}, and X

Y C denotes the
rotation matrix transforming vectors from frame {Y } into frame {X}. In

is the n×n identity matrix, and finally, by×c is the skew-symmetric matrix
associated with the 3× 1 vector y.



where s(ti) =
∫ ti

t0

∫ τ

t0

B0
B C(ς)am(ς) dςdτ (5)

Next we note that the IMU position at time ti with respect to
{B0} is given by B0pBi

= G
B0

CT (Gp(ti)− Gp(t0)). Using
this expression, we can re-arrange (4) to obtain:

B0pBi
= B0v0∆ti + B0g

∆t2i
2

+ s(ti) (6)

where B0v0 = G
B0

CT Gv(t0) is the IMU velocity at time t0
expressed with respect to frame {B0}, and B0g = G

B0
CT Gg

is the gravity vector expressed with respect to the same
frame. Eq. (6) will be useful in what follows, as it contains
only observable quantities, and none of the global (unobserv-
able) ones. We next show how the camera measurements can
be expressed as a function of the quantities appearing in (6).

Assuming an intrinsically calibrated camera, the obser-
vation of the j-th feature at time ti is described by the
perspective camera model:

zij =
[
uij

vij

]
=




Ci xj
Cizj
Ci yj
Cizj


 + nij , (7)

where Cipj =
[
Cixj

Ciyj
Cizj

]T is the position of the
j-th feature with respect to the camera frame at time ti,
and nij is the measurement noise. We use the set Sm to
describe all pairs of indices {i, j} that describe the available
measurements.

Using basic properties of frame transformations, we can
express the vector Cipj as follows:

Cipj = C
BC Bi

B0
C (B0pj − B0pBi) + CpB (8)

where B0pj is the position of the feature with respect to
{B0}, while {C

BC, CpB} denotes the constant transformation
(rotation and translation) between the IMU and camera.
Using (6), we can rewrite (8) as:

Cipj = C
BC Bi

B0
C

(
B0pj −B0v0∆ti −B0g

∆t2i
2

− s(ti)
)

+ CpB (9)

On the right-hand side of above equation the unknown
quantities are the vectors B0pj , B0v0,B0g and the IMU-
camera extrinsic calibration {C

BC, CpB}, while the rotation
matrix Bi

B0
C and the vector s(ti) are computed using the IMU

measurements. We now employ (7), to obtain (ignoring the
measurement noise):[

1 0 −uij

0 1 −vij

]
Cipj =

[
0
0

]
(10)

Using (9) and re-arranging terms, the above equation can be
written as Aijx = bij , where x is the following (3M+9)×1
vector:

x =
[
B0pT

1 . . . B0pT
M

B0vT
0

CpT
B

B0gT
]T (11)

and

Aij =
[
1 0 −uij

0 1 −vij

]
C
BC Bi

B0
C Tij (12)

bij =
[
1 0 −uij

0 1 −vij

]
C
BC Bi

B0
C s(ti) (13)

Tij =

[
. . . I3︸︷︷︸

j−th block

. . . −∆tiI3
B0
Bi

C B
CC −∆t2i

2 I3

]

(14)

The equation Aijx = bij is derived from the observation of
the j-th feature in the i-th image. By collecting the equations
resulting from all feature and IMU measurements, we obtain
the linear system

Ax = b (15)

where A is a matrix with block rows Aij , and b is a block
vector with block elements bij , for all {i, j} ∈ Sm.

Let us now examine the properties of the linear system
in (15). First, we note that the vector x contains all the
unknowns that are necessary to recover the observable terms
(O1)-(O4), except for the camera-to-IMU rotation. Specif-
ically, knowing the direction of gravity in the local frame
is equivalent to knowing the IMU’s attitude with respect to
the horizontal plane (quantity (O1)). Moreover, if B0v0 and
B0g are known, then we can estimate the IMU trajectory
in the local frame (quantity (O2)), using (6). The feature
positions (O3) and the camera-to-IMU translation (part of
(O4)) are contained explicitly in x. Thus, solving this linear
system would allow us to determine all the parameters we
seek, except for C

BC. From (12)-(14) we see that the matrix
A and the vector b can be computed using the feature mea-
surements, the IMU measurements, and the rotation matrix
C
BC. We therefore see that if we are able to determine the
camera-to-IMU rotation, we can easily recover all remaining
quantities.

A. Number of measurements required

An important consideration is to determine the number of
images and features required in order to be able to estimate
all the unknown parameters in the system. The first question
we examine is the minimum number of images. In [19] we
show that if the number of images is N ≤ 3, then the matrix
A in the linear system (15) is rank-deficient by at least 3.
In other words, even if C

BC was known, we would still not
be able to uniquely determine the unknown parameters in
the system. Thus, the minimum number of images needed is
N = 4.

To determine the number of features required, we employ
a counting argument: for each feature measurement in each
image, we obtain 2 scalar equations from Aijx = bij . Thus,
with N images and M features, the number of measurement
constraints is 2NM . On the other hand the number of ob-
servable unknowns is 3M +11 (3M for the feature positions,
6 for the camera-to-IMU transformation, 3 for the initial
velocity, and 2 for the roll and pitch). To be able to uniquely
determine all the unknowns, we must have 2MN ≥ 3M+11,
from which we see that the minimum number of features
needed is M = 3, if four images are available, M = 2,
if five images are available, and M = 1, if seven or more
images are available. In all these minimal cases, the number
of measurements is higher than the number of unknowns, so
the problem is over-constrained, and a unique solution can
be computed.



IV. DETERMINING THE CAMERA-TO-IMU ROTATION

In this section, we present two methods for computing the
camera-to-IMU rotation matrix. The first one is applicable
when at least M = 5 features are observed. In that case,
we can estimate the relative camera orientation between
different images, Ci

Cj
C, using image-based motion estimation

algorithms such as [20] (the same can be accomplished if
M = 4 features are observed, but the algorithms involved
are significantly more complex [21]). When M < 4, the
feature measurements alone cannot be used to estimate the
camera rotation. For that case, we describe in Section IV-B
a method that only requires M ≥ 2 features to recover the
camera-to-IMU rotation matrix.

A. Solution for the case M ≥ 5

We first consider the case where enough features are
observed so that we can recover the relative camera orien-
tation between different time instants, Ci

Cj
C, using only the

feature observations. By using the IMU measurements, we
can estimate the IMU orientation change Bi

Bj
C in the same

time interval, via (3). We can then employ the following
equation for the unknown C

BC:
Ci

Cj
C = C

BC Bi

Bj
C B

CC ⇒ Ci

Cj
C C

BC = C
BC Bi

Bj
C (16)

To recover the matrix C
BC, we can transform the above

equations into their equivalent unit-quaternion representa-
tion [22], [23]. Specifically, using this representation, we
have [24]:

Ci

Cj
q̄⊗ C

Bq̄ = C
Bq̄⊗ Bi

Bj
q̄

⇒L(Ci

Cj
q̄) C

Bq̄ = R(Bi

Bj
q̄) C

Bq̄ (17)

⇒(L(Ci

Cj
q̄)−R(Bi

Bj
q̄)

)
C
Bq̄ = 0 (18)

where, for a 4× 1 unit quaternion q̄, we denote:

q̄ =
[

q1 q2 q3 q4

]T =
[

qT q4

]T
(19)

and

L(q̄) =
[

q4I3 − bq×c q
−qT q4

]
(20)

R(q̄) =
[

q4I3 + bq×c q
−qT q4

]
(21)

Eq. (18) is a linear system of the form Bij
C
Bq̄ = 0, where

the unknown is the quaternion C
Bq̄ describing the camera-to-

IMU rotation. By using all the available pairs of images, we
can construct an over-constrained linear system:

B C
Bq̄ = 0 (22)

where B is a matrix with block rows Bij . The least-squares
solution C

Bq̄ is the right unit singular vector corresponding to
the smallest singular value of B, and from it we can directly
recover the rotation matrix C

BC [24]. For the solution to be
unique, at least two pairs of images, where the system rotates
about different axes, are required [23]. Therefore, we see
that at least three images are needed, in which at least five
features are tracked, for this method to be able to determine
the camera-to-IMU rotation.

B. Solution for M ≥ 2 points

We now present an alternative method, that can operate
for any number of points M ≥ 2, i.e., it can recover the
matrix C

BC even when the feature measurements alone cannot
be used to determine the relative camera rotation between
images.

From the properties of the cross product, we know that for
any vectors a1 and a2, the following holds: (a1×a2)T (a1−
a2) = 0. Therefore, for any two features m and n observed
by the camera at time instant ti, we can write

(Cipm × Cipn)T (Cipm − Cipn) = 0 (23)

Next, we use (7) to write Cipj = Cizj [zT
ij 1]T , and thus:

([
zim

1

]
×

[
zin

1

])T

(Cipm − Cipn) = 0

⇒ lTimn(Cipm − Cipn) = 0 (24)

Applying (8) for Cipm and Cipn and simplifying, we obtain:

lTimn
C
BC Bi

B0
C

(
B0pm − B0pn

)
= 0 (25)

In this last equation, lTimn is a known vector computed using
the feature measurements, while Bi

B0
C is a known matrix

computed using the IMU measurements. The matrix C
BC and

the vector ∆p = B0pm−B0pn are unknown. We can collect
all unknowns in a vector y:

y = [c1 . . . c9 p1 p2 p3]T = [cT ∆pT ]T (26)

where ci, i = 1 . . . 9 are the elements of the 3 × 3 rotation
matrix C

BC, and pi, i = 1 . . . 3 are the elements of ∆p. We
now see that (25) is a quadratic equation in the elements of
y. From each image we can extract one such equation, and
thus from N images we obtain N quadratic equations in the
elements of y. Additionally, the rotation matrix must satisfy
the orthogonality constraints, which are represented by six
quadratic equations in c. Finally, since (25) is homogeneous
in ∆p, we must enforce a norm constraint on this vector:

||∆p||2 = 1 ⇒ ∆pT ∆p = 1 (27)

which is another quadratic equation in ∆p. We thus see that
in total, with N images we obtain N+7 quadratic constraints
in y. Since y is a 12× 1 vector, when at least 5 images are
available, we have a number of equations equal to the number
of unknowns.

So far only two features were considered. To extend our
formulation to the case where M ≥ 2 features are observed,
we note that (25) can be rewritten as:

lTimn
C
BC Bi

B0
C

(
(B0pm − B0p1)− (B0pn − B0p1)

)
= 0

(28)

Proceeding similarly, we obtain a system of quadratic equa-
tions in terms of the following vector of unknowns:

y = [cT (B0p2 − B0p1)T . . . (B0pM − B0p1)T ]T (29)

where c is subject to the six orthogonality constraints, while
the remaining part of y is subject to a scale constraint such
that its norm equals one. The vector y contains n = 3M +6
unknowns.



1) Solving the system of equations using convex iteration:
The equations derived above form a system of multivariate
quadratic equations. Solving such a system algebraically
is known to be NP-complete [25], and therefore here we
will employ a solution approach based on iterative convex
approximations. Specifically, the system of equations in y
can be written as yT Fiy = li, i = 1 . . . p, where p is the
number of constraints available (12 in the minimal case of
M = 2), Fi are real symmetric matrices, and li are constants
equal to zero or one. Thus, y can be found by solving the
feasibility problem:

find y (30)

subject to yT Fiy = li

Using the property yT Fiy = trace(yT Fiy) =
trace(FiyyT ), we can write the above problem equivalently
as:

find Y (31)
subject to trace(FiY) = li, i = 1, . . . , p

Y ∈ Sn
+, rank(Y) = 1

where Sn
+ denotes the cone of n × n positive semidefinite

matrices. Once the solution to this problem is found, y is
given by Y = yyT . The above feasibility problem can be
exactly reformulated by relaxing the rank constraint into an
inequality:

find Y (32)
subject to trace(FiY) = li, i = 1, . . . , p

Y ∈ Sn
+, rank(Y) ≤ 1

Since the only matrix with rank equal to zero is the zero
matrix (which is not a solution), the above problem will have
the same solution as (31). To obtain the solution to the above
problem we will use the results of [26]. Specifically, [26]
shows that the solution to (32) can be found by iteratively
solving the following two convex optimization problems:

minimize trace(YW) (33)
subject to trace(FiY) = li, i = 1, . . . , p

Y ∈ Sn
+

and

minimize trace(Y? W) (34)
subject to 0 ¹ W ¹ In

W ∈ Sn
+, trace(W) = n− 1

where ¹ denotes matrix inequality in the positive-
semidefinite sense. The process is as follows: we select an
initial value for the so-called direction matrix W (set to zero
in our implementation), and solve problem (33) to obtain Y?.
Then we use this value in problem (34) find a new value W,
and the process is repeated to convergence. In [26] it is shown
that when this iteration converges, the solution obtained is
the exact solution to the original problem (32) (and thus,
to our original problem of finding y). We note that both
problems (33) and (34) are semidefinite programs (SDPs),
and can be efficiently solved with off-the-shelf algorithms.

2) Addressing the presence of noise: Eq. (25) will only
hold exactly if the measurements are perfect. When noise is
present, we will have

l′Timn
C
BC Bi

B0
C

(
B0pm − B0pn

)
= εimn (35)

where εimn is a (small) error. To be able to solve the problem
using the convex-iteration formulation presented above, we
can compute an upper bound for the error, such that:

− eb
mn ≤ l′Timn

C
BC Bi

B0
C

(
B0pm − B0pn

) ≤ eb
mn (36)

Thus, we can now write the problem of estimating the
unknown vector y as the feasibility problem:

find Y (37)

subject to − eb
ij ≤ trace(Fi Y) ≤ eb

ij , ∀i, j
trace(FiY) = li, i = 1, . . . , 7
Y ∈ Sn

+, rank(Y) = 1

where the inequality constraints result from the measure-
ments, while the equality constraints are due to the orthog-
onality and unit-norm constraints on the elements of y.
It is important to note that, as in (31), these constraints
define a convex set for Y, and thus the method of [26]
can still be applied. Therefore, to find the solution to the
problem (37), we use a convex iteration analogous to that
of (33) and (34), with the only difference that the equality
constraints in (33) are now replaced by the combination of
equality and inequality constraints as shown above.

The accuracy with which the vector y (and therefore the
rotation matrix C

BC, which we are interested in) can be
estimated depends on the choice of the bounds eb

ij . If too
loose bounds are chosen, then the solution obtained will
be inaccurate. On the other hand if too small bounds are
selected the problem will become infeasible. To address this
problem, in our implementation we compute an initial, low
estimate for the bounds using the known statistics of the
sensor noise. We begin running the convex iteration using
these values, and if the problem is infeasible (which results in
the iterations stalling [26]), we gradually increase the bounds
until convergence succeeds.

V. SOLUTION OF THE LINEAR SYSTEM Ax = b
Once the rotation matrix C

BC has been determined by one
of the two methods described in the previous section, we
can then proceed to solve the linear system (15) to recover
the remaining unknown parameters. In the presence of noise
this system will have no exact solution, and therefore we
can instead compute a least-squares solution, i.e., we can
minimize the function ||Ax−b||2. It is a well-known result
that the optimal value of x for this problem is given by x? =
(AT A)−1AT b. Note however, that this solution does not
take advantage of the fact that the norm of the gravitational
acceleration vector may be known in advance. To exploit
this additional information, we can formulate a constrained
least-squares problem:

minimize ||Ax− b||2 =
∣∣∣∣
∣∣∣∣[A1 A2]

[
x1

B0g

]
− b

∣∣∣∣
∣∣∣∣
2

(38)

subject to ||B0g||2 = g



where g is the known value of the norm of the gravitational
acceleration, x1 is a vector comprising the landmark posi-
tions, IMU velocity, and IMU-camera translation (see (11)),
and the partitioning of A is compatible with that of x. The
above problem is a quadratically-constrained least-squares
problem. Its optimal solution can be derived using the
method of Lagrange multipliers [19], and is given by:

x? =
[−(AT

1 A1)−1AT
1 A2

B0g? + (AT
1 A1)−1AT

1 b
B0g?

]
(39)

with B0g? = (D− λI3)−1d, where

D = AT
2

(
I−A1(AT

1 A1)−1AT
1

)
A2 (40)

d = AT
2

(
I−A1(AT

1 A1)−1AT
1

)
b (41)

and where λ is the smallest solution to the equation:

det
(

(D− λI3)2 − 1
g2

ddT

)
= 0 (42)

The matrix whose determinant we compute in (42) is a
3 × 3 matrix, whose elements are quadratic polynomials
in λ. Therefore, (42) is a sixth-order polynomial equation
in λ. To find the smallest root, one can simply compute
all roots (which can be done numerically with very low
computational cost), and choose the minimum real one.
Our tests have shown that when noise is present, using the
known gravity information (i.e., employing the constrained-
least-squares solution (39) instead of the unconstrained one)
results in substantially improved estimation accuracy.

VI. MAXIMUM-LIKELIHOOD ESTIMATOR

The direct solutions presented to this point offer the
advantage of providing the result without the need for any
prior initial guess. However, they are not statistically optimal,
as the presence of noise is not properly modelled. To properly
account for the noise in the measurements, we formulate a
MLE for estimating a parameter vector θ comprising (i) the
IMU state (position, velocity, orientation) at each time instant
where an image is recorded, (ii) the positions of all features,
pj , j = 1 . . . M , and (iii) the camera-to-IMU transformation.
Quantities (i)-(ii) are expressed with respect to a frame whose
origin coincides with the origin of the initial IMU frame,
while its z-axis is aligned with the direction of gravity.

Following standard practice, we model the image mea-
surement noise vector, nij , as a Gaussian zero-mean random
variable, with covariance matrix Rij . Specifically, we use the
IMU measurements in the time interval [ti, ti+1] to compute
the change in the IMU state:

xIMUi+1 = f(xIMUi , ωm,am) + wi (43)

where wi is a noise vector, modelled as zero-mean, Gaussian
random variable with covariance matrix Qi. The function f
and the covariance matrix Qi are computed using numerical
integration of the continuous-time motion equations [18].

Maximizing the likelihood of the measurements is equiv-
alent to maximizing the log-likelihood, which, in turn, is
equivalent to minimizing the cost function:

c(θ) =
∑

i,j

∣∣∣∣zij − h(xIMUi ,pj ,
C
BC, CpB)

∣∣∣∣2
Rij

begin
if enough features available then

Use image-based motion estimation to compute
the camera relative rotation.
Solve (22) to get C

B
ˆ̄q.

else
Initialize error bounds eb

ij , set W = 0.
Compute Fi in (37) from the measurements.
while not converged do

Solve (33) with current W to get Y?.
Solve (34) with Y? to update W.
if stall detected then

Increment error bounds, reset W.
end

end
end
Obtain C

BĈ from C
B

ˆ̄q or Y?.
end
begin

Compute A,b in (15) from C
BĈ and measurements.

Solve (39)-(42) for C p̂B , B0 v̂B0 ,
B0 ĝ, and B0 p̂j .

end
begin

Minimize (44) using Levenberg-Marquardt starting
from C

BĈ, C p̂B , B0 v̂B0 ,
B0 ĝ, and B0 p̂j for initial

states.
end

Algorithm 1: Procedure of Estimator Initialization

+
N−1∑

i=0

∣∣∣∣xIMUi+1 − f(xIMUi , ωm,am)
∣∣∣∣2

Qi
(44)

where h(·) is the function describing the perspective mea-
surement model (see (7)), and

∣∣∣∣u
∣∣∣∣2

M
= uT M−1u.

The cost function c(θ) is nonlinear, and its minimization
is carried out iteratively, by application of the Levenberg-
Marquardt method [27]. In our testing we have observed
that if the direct solutions described in Sections IV and V
are used to provide an initial guess for the iterations, the
convergence is rapid and requires only a few (typically less
than 10) iterations. We also note that, even though the IMU
biases were assumed to be known in the derivation of the
direct solutions, if desired these biases can be included as
unknowns in the MLE, and estimated along with all other
parameters.

The full procedure to determine the observable quantities
with noisy measurements is summarized in Algorithm 1. The
three processing blocks correspond to the three estimation
stages, namely IMU-camera rotation estimation (Section IV),
constrained least-squares solution (Section V) and MLE
(Section VI).

VII. RESULTS

We now present the results of Monte-Carlo simulation tri-
als, which illustrate the accuracy of the methods described in
the preceding sections, and the dependence of this accuracy
on several parameters of interest. In all the results presented
here, the accelerometer and gyroscope measurements are
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Fig. 1. Comparison of the errors of the direct least-squares solution vs.
the MLE.
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Fig. 2. Comparison of the errors of the direct solution vs. the MLE.

corrupted by independent zero-mean Gaussian noise pro-
cesses, with standard deviation 0.005 m/s2 and 0.005 rad/s,
respectively. The image-noise standard deviation is set to
1 pixel, in a camera with a field of view of 60◦ and focal
length equal to 500 pixels. IMU measurements are available
at 100 Hz, while images are recorded at 1 Hz. The IMU-
camera rotation matrix and translation vector are randomly
generated and fixed during each trial. Finally, a trajectory
is generated using a random initial orientation and velocity,
as well as randomly generated acceleration and rotational
velocities at each time-step. Similarly, the point features are
randomly placed in the scene, so that they can be seen by
all the camera poses.

We first compare the accuracy attained using the gravity-
constrained least-squares (LS) solution described in Sec-
tion V, against that of the MLE in Section VI. Specifically,
we consider the case where four features are seen in eight
images, and compute the errors of the two methods. Due
to the number of features, we use the method described

in Section IV-B to determine the IMU-camera rotation ma-
trix with noisy measurements. Fig. 1 shows the norm of
the errors in the orientation, velocity, and feature position,
and Fig. 2 shows the norm of the errors in the calibra-
tion parameters in 100 Monte-Carlo trials using different
random trajectories. The average errors for the LS and
MLE methods are {1.1252, 0.4414} degrees for orientation;
{0.9772, 0.2412} m/s for velocity; and {9.8463, 2.1522} m
for the feature positions, respectively. For the camera-to-
IMU extrinsic calibration parameters, the average errors are
{0.9560, 0.2430} degrees for the relative orientation, and
{0.8382, 0.2956} m for the relative position. These results
show that the MLE leads to significantly improved accuracy,
as expected, due to the fact that it employs a probabilistic
modelling of the measurement noise. However, the success
of the MLE relies on having a good initial guess, which is
provided from the direct methods of Sections IV-B and V.
We tried initializing the MLE with randomly generated (but
reasonable) starting points for the estimated parameters, and
have observed divergence in the majority of trials. This
demonstrates the practical utility of using the direct solutions.

We next examine the effect of varying the number of
images, N , and features, M , on the estimation accuracy. For
each selection of (N,M), we run 100 Monte Carlo trials
with randomly generated trajectories, feature positions and
extrinsic calibration, and plot the average standard deviation
reported by the MLE. Fig. 3(a) shows the results for the
IMU orientation and velocity, while Fig. 3(b) plots the results
for the IMU-camera orientation and translation. As expected,
the standard deviation of the errors monotonically decreases
as more images or more features become available. The
improvement follows a law of diminishing return: for in-
stance, while using more than 10 features seems to offer little
benefit, increasing the number of features from two to three
results in a substantial accuracy improvement. Similarly,
increasing the number of images from the minimum of four
significantly improves the estimates’ accuracy. In fact, these
results show that with the particular noise settings of these
tests, using the minimum four images with a small number of
features may lead to unacceptably large estimation errors. On
the other hand, with more than four images, good accuracy
can be obtained.

VIII. CONCLUSION

In this paper, we present methods for initializing an esti-
mator in vision-aided inertial navigation applications, with-
out any prior knowledge about the system’s initial state. We
directly use the camera and inertial measurements to com-
pute the system’s observable quantities, namely the platform
attitude and velocity, feature positions, and IMU-camera
calibration. A key contribution of this work is a convex-
optimization based algorithm for computing the rotation
matrix between the camera and IMU, which is operational
even with a small number of features (M ≥ 2). After
the rotation matrix has been computed, all other observable
quantities can be determined by solving a quadratically-
constrained least-squares problem. Finally, these estimates
are used as the starting point of an iterative maximum-
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Fig. 3. Accuracy as a function of the number of features and images.

likelihood estimator to obtain more accurate, statistically
optimal estimates. Through Monte-Carlo tests, the proposed
algorithms are shown to be suitable for use in applications
where state estimation has to be performed without any prior
information.
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